L'indiviualizzazione come decisione
Abstract
Nelle scienze forensi e discipline affini, ricercatori e professionisti continuano ad essere divisi —da un punto di vista intuitivo e concettuale —sul significato della nozione di ‘individualizzazione’, quel processo tramite il quale un insieme di soggetti potenzialmente all’origine di una traccia èridotto ad un singolo individuo. In particolare, le recenti inversioni di tendenza promotrici di un’interpretazione dell’individualizzazione come decisione si sonorivelate un semplice cambio di etichetta [1], lasciando irrisolti aspetti di natura concettuale e teorica. Va inoltre detto che sia organizzazioni professionali che professionisti preferiscono astenersi dallo sposare la nozione di decisione nei termini di un approccio decisionale formale all’interno del quale l’individualizzazione puòessere concettualizzata in maniera adeguata. Questo atteggiamento è dovuto in modo particolare alle difficoltàinsite nel misurare la desiderabilitào indesiderabilitàdelle conseguenze di una decisione (p. es. usando le funzioni di utilità). Questo articolo presenta e discute i concetti fondamentali di utilitàe perdita, con particolare attenzione alla loro applicazione all’individualizzazione in campo forense. L’articolo, per un verso, sottolinea come un apprezzamento adeguato del quadro teorico possa semplificare i compiti necessari all’applicazione della teoria bayesiana della decisione e, per l’altro, dimostra come detta teoria possa essere applicata in maniera proficua a problemi concreti. Si dimostra che se si vogliono apportare cambiamenti alle scienze forensi che non siano meri cambi di etichetta, concepire l’individualizzazione come decisione richiede l’apprezzamento del quadro teorico sottostante.
Throughout forensic science and adjacent branches, academic researchers and practitioners continue to diverge in their perception and understanding of the notion of ‘individualization’, that is the claim to reduce a pool of potential donors of a forensic trace to a single source. In particular, recent shifts to refer to the practice of individualization as a decision have been revealed as being a mere change of label [1], leaving fundamental changes in thought and understanding still pending. What is more, professional associations and practitioners shy away from embracing the notion of decision in terms of the formal theory of decision in which individualization may be framed, mainly because of difficulties to deal with the measurement of desirability or undesirability of the consequences of decisions (e.g., using utility functions). Building on existing research in the area, this paper presents and discusses fundamental concepts of utilities and losses with particular reference to their application to forensic individualization. The paper emphasizes that a proper appreciation of decision tools not only reduces the number of individual assignments that the application of decision theory requires, but also shows how such assignments can be meaningfully related to constituting features of the real-world decision problem to which the theory is applied. It is argued that the decisonalization of individualization requires such fundamental insight to initiate changes in the fields’ underlying understandings, not merely in their label.
ReferencesS.A. Cole, Individualization is dead, long live individualization! Reforms of reporting practices for fingerprint analysis in the United States, Law Prob. Risk 13 (2014)
–150.
G. Parmigiani, L. Inoue, Decision Theory: Principles and Approaches, John Wiley &
Sons, Chichester, 2009.
T.G. Chondros, Archimedes’ influence in science and engineering, in: S.A. Paipetis,
M. Ceccarelli (Eds.), The Genius of Archimedes – 23 Centuries of Influence on
Mathematics, Science and Engineering, History of Mechanism and Machine
Science, vol. 11, Springer, Dordrecht, 2010, pp. 411–425.
E.J. Dijksterhuis, C. Dikshoorn, W.R. Knorr, Archimedes, Princeton University
Press, Princeton, NJ, 1987.
C. Champod, Identification/individualisation, overview and meaning of ID, in: J.H.
Siegel, P.J. Saukko, G.C. Knupfer (Eds.), Encyclopedia of Forensic Science, Academic
Press, San Diego, 2000, pp. 1077–1084.
S.A. Cole, Forensics without uniqueness, conclusions without individualization:
The new epistemology of forensic identification, Law Prob. Risk 8 (2009) 233–255.
D.H. Kaye, Beyond uniqueness: the birthday paradox, source attribution and
individualization in forensic science testimony, Law Prob. Risk 12 (2013) 3–11.
National Research Council, Strengthening Forensic Science in the United States: A
Path Forward, National Academy Press, Washington, DC, 2009.
C. Champod, Fingerprint identification: advances since the 2009 NAS report, Phil.
Trans. R. Soc. B Biol. Sci. 370 (2015) 1–10, http://dx.doi.org/10.1098/
rstb.2014.0259, 20140259.
B. Robertson, G.A. Vignaux, Interpreting Evidence. Evaluating Forensic Science in
the Courtroom, John Wiley & Sons, Chichester, 1995.
C.G.G. Aitken, F. Taroni, Statistics and the Evaluation of Evidence for Forensic
Scientists, 2nd edition, John Wiley & Sons, Chichester, 2004.
C.G.G. Aitken, P. Roberts, G. Jackson, Fundamentals of Probability and Statistical
Evidence in Criminal Proceedings (Practitioner Guide No. 1), Guidance for Judges,
Lawyers, Forensic Scientists and Expert Witnesses, Royal Statistical Society’s
Working Group on Statistics and the Law, 2010.
ENFSI, ENFSI Guideline for Evaluative Reporting in Forensic Science, Strengthening the Evaluation of Forensic Results Across Europe (STEOFRAE), Dublin, 2015.
C. Neumann, I.W. Evett, J. Skerrett, Quantifying the weight of evidence from a
fingerprint comparison: a new paradigm, J. R. Stat. Soc. Ser. A 175 (2012) 371–416.
D.J. Balding, Weight-of-Evidence for Forensic DNA Profiles, John Wiley & Sons,
Hoboken, NJ, 2005.
S. Bozza, F. Taroni, R. Marquis, M. Schmittbuhl, Probabilistic evaluation of
handwriting evidence: likelihood ratio for authorship, J. R. Stat. Soc. Ser. C Appl.
Stat. 57 (2008) 329–341.
A. Biedermann, S. Bozza, F. Taroni, Decision theoretic properties of forensic
identification: underlying logic and argumentative implications, Forensic Sci.
Int. 177 (2008) 120–132.
A. Biedermann, P. Garbolino, F. Taroni, The subjectivist interpretation of probability
and the problem of individualisation in forensic science, Sci. Just. 53 (2013) 192–200.
F. Taroni, S. Bozza, A. Biedermann, G. Garbolino, C.G.G. Aitken, Data Analysis in
Forensic Science: A Bayesian Decision Perspective. Statistics in Practice, John
Wiley & Sons, Chichester, 2010.
D.V. Lindley, Probability, in: C.G.G. Aitken, D.A. Stoney (Eds.), The Use of Statistics
in Forensic Science, Ellis Horwood, New York, 1991, pp. 27–50.
F. Taroni, C.G.G. Aitken, P. Garbolino, De F inetti’s subjectivism, the assessment of
probabilities and the evaluation of evidence: a commentary for forensic scientists,
Sci. Just. 41 (2001) 145–150.
F. Taroni, S. Bozza, C.G.G. Aitken, Decision analysis in forensic science, J. Forensic
Sci. 50 (2005) 894–905.
F. Taroni, A. Biedermann, S. Bozza, G. Garbolino, C.G.G. Aitken, Bayesian Networks
for Probabilistic Inference and Decision Analysis in Forensic Science. Statistics in
Practice, 2nd ed., John Wiley & Sons, Chichester, 2014.
A. Biedermann, F. Taroni, C. Aitken, Liberties and constraints of the normative
approach to evaluation and decision in forensic science: a discussion towards
overcoming some common misconceptions, Law Prob. Risk 13 (2014) 181–191.
S. Gittelson, S. Bozza, A. Biedermann, F. Taroni, Decision-theoretic reflections on
processing a fingermark, Forensic Sci. Int. 226 (2013) e42–e47.
D. Lindley, Making Decisions, 2nd ed., John Wiley & Sons, Chichester, 1985.
F.P. Ramsey, Truth and probability, in: D.H. Mellor (Ed.), Philosophical Papers,
Cambridge University Press, Cambridge, 1990/1926, pp. 52–109.
J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, 3rd
ed., Princeton University Press, Princeton, 1953.
J.M. Bernardo, A.F.M. Smith, Bayesian Theory, 2nd ed., John Wiley & Sons,
Chichester, 2000.
S. French, Decision Theory, An Introduction to the Mathematics of Rationality,
Ellis Horwood Limited, Chichester, 1988.
D.V. Lindley, Understanding Uncertainty, revised ed., John Wiley & Sons,
Hoboken, 2014.
M.H. De, Groot, Optimal Statistical Decisions, McGraw-Hill, New York, 1970.
P. Garbolino, Probabilita` et logica della prova. Epistemologia Giudiziaria (Collana
diretta da Giulio Ubertis), Giuffre` Editore, Milano, 2014.
S. Bozza, J. Brose´ us, P. Esseiva, F. Taroni, Bayesian classification criterion for
forensic multivariate data, Forensic Sci. Int. 244 (2014) 295–301.
D.H. Kaye, Clarifying the burden of persuasion: what Bayesian decision rules do
and do not do, Int. J. Evid. Proof 3 (1999) 1–29.
W. Blackstone, Commentaries on the Laws of England, Vol. 4, A Facsimile of the
First Edition of 1765–1769, University of Chicago Press, Chicago, 1996.
I.J. Good, Probability and the weighing of evidence, Griffin, London, 1950.
D.A. Stoney, Discussion on the paper by Neumann, Evett and Skerrett, J. R. Stat.
Soc. Ser. A Stat. Soc. 175 (2012) 399–400.
S.E. Fienberg, The Evolving Role of Statistical Assessments as Evidence in the
Courts, Springer-Verlag, New York, 1989.
Downloads
Published
Issue
Section
License
All products on this site are released with a Creative Commons license (CC BY-NC-SA 2.5 IT) http://creativecommons.org/licenses/by-nc-sa/2.5/it/ With this license, Authors retain copyright and publishing rights without restrictions, but allow any user to share, copy, distribute, transmit, adapt and make commercial use of the work without needing to provide additional permission, provided appropriate attribution is made to the original author or source. By using this license, all Philosophical Readings’s articles meet all funder and institutional requirements for being considered Open Access. Philosophical Readings does not charge an article processing or submission fee.